Current Hot Cell Monitor Status

Jeff Temple
University of Maryland
18 October 2007

2 Hot Cell Finder Algorithms

- Threshold counter
 - Plots energy, cell location for all cells above threshold
 - Two (tuneable) thresholds: 1 GeV and 15 GeV

- NADA (Neighborless Anomalous Deposit Algorithm)
 - Used by D0
 - Candidate hot cell energy is compared to total energy in surrounding cells

NADA Details

- Check that candidate cell has energy > E_{cand}
- Sum energy in cube of nearest-neighbor cells in η, φ, and depth
 - Cells must have energyE_{cell}
- If total energy < E_{cube},
 then cell is identified as hot

Parameters in blue are tuneable from the HcalMonitorModule.cfi file

NADA Parameters

	negative E_T	low positive E_T	high positive E_T	very high E_T
E_T range	$E_T^{cand} < -1 \text{ GeV}$	$1~{\rm GeV} < E_T^{cand} < 5~{\rm GeV}$	$5~{\rm GeV} < E_T^{cand} < 500~{\rm GeV}$	$500~{\rm GeV} < E_T^{cand}$
E_{cut}^{cell}		$100~\mathrm{MeV}$	$0.020 \times E^{cand}$	
E_{cut}^{cube}		$100~{ m MeV}$	$0.020 \times E^{cand}$	
identify	always hot cell	hot cell if	hot cell if	always hot cell
		$E_i^{cell} > E_{cut}^{cell}, E^{cube} < E_{cut}^{cube}$	$E_i^{cell} > E_{cut}^{cell}, E^{cube} < E_{cut}^{cube}$	

- Values are default D0 parameters
- All are mutable with .cfi file

HBHE Hot Cell Finder on Sim QCD

- See agreements and disagreements between algorithms
- Use different thresholds in different regions?

Hot Cell Finder on Real Data

- From logbook entries https://cmsdaq.cern.ch/elog/HCAL/2651:
- Light-leak runs in HB:
 - 23003: HB+ sections 2,3
 - 23061: covered HB+ section 2
 - 23340: LV, HV on for HB+ sections 2,3 and HB- section 3.
 HB- section 3 covered
 - 23375: HB- section 3 uncovered; light leak appears fixed
 - 23475: HP+ sections 2,3; HP- sections 2,3. All layers covered

Threshold Hot Cell Finder

- Plot cells with E>1 GeV
- No cells seen with E> 5 GeV

Run 23003 Run 23475

NADA Hot Cell Finder

Negative-Energy Cell

NADA marks a hot cell if E < 1 GeV Edit View Options Inspect Classes **NADA HB Energy** NADA_HB_EN_MAP 23854 Mean x 0.04171 20 Mean y 7.545 RMS x 1.949 18 RMS y 0.6437 -50(16 12 -10(10 8 -15(6 -20(2 010 5 10

NADA cell occupancy ignoring negative-energy cells

NADA – ignoring negative energy cells

- Run 23003
- Dull plot! -- no hot cells found with NADA algorithm!

Hot Cell Thresholds in other runs

Summary

- Thanks to Wade, hot cell finder can be run on sim files as well as real data
 - Test algorithms on sim
 - Check for bugs (NADA performance at detector corners/edges)
 - Look for differences between subdetectors (varying thresholds)
 - Tune on data
 - Are results from light leak runs reasonable?
- Add new hot cell finder algorithms?